Measurement of stress evolution in thin films
using real-time in situ wafer curvature (k-Space MOS)
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- Intro to k-Space MOS
(multi-beam optical sensor)
- theory
- capabilities
- analysis
- Examples
-polycrystalline films

* steady-state stress
Scaling with D/RL

* stress vs thickness
- sputtering
- tin whisker formation
- battery materials
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Stress in thin films is a generic problem
Leads to decreased performance, deformation, failure
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A kinetic analysis of residual stress evolution in polycrystalline thin films
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Want to:

understand stress, First need to
control stress, ' measure it

predict stress

Mizushima et al. , Electrochimica diamond.kist.re.kr/DLC/
Acta. 2006 mwmoon/qgallery.htm



Measure thin film stress via wafer curvature

Stressed film bends the substrate MOSS (multi-bean optical sensor)
Stoney’s equation Curved surface deflects
array of parallel beams

substrate substrate
h, film
film . hf
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Curvature measures product Gh = od M Shs CoOSx¥
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Multibeam approach (MOSS): easy to implement/robust

Simple, stable optics (aligned
outside processing chamber)

in situ, real-time, high sensitivity

R> 20 kM, ch; <1 GPa-A

Can see 0.1 ML Ge on Si(001)

System requirements:
- Ports to measure specular reflection
- Reflective surface (backside ok)
Measurement technique
- Etalon produces array of parallel beams
- CCD measures change 1 & cosa
. . = —=—
in beam spacing (6d/d) R d 2L

Multi-beam technique reduces
sensitivity to vibration
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Measure difference between beams
not absolute position



Interpreting curvature measurements:

How does curvature relate to evolving stress distribution?

Average stress:

Film with non-uniform stress distribution i 0—( Z)

1"
O = Z[O’(Z)dz substrate

Curvature vs. time 5
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- Curvature changes as film
grows over time
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Stress distribution:

Study change of d_K o(h,,t) (9_ i f (90’(2 t)
curvature with time ¢t ot
: - A
(1) Stress in new layers — h
at the surface, O (/1 1ot ) stressed film v
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-Incremental stress
proportional to slope of K vs 4

- But only if stress not
changing in rest of film



Stress distribution: iy
Study change of d_K < o(h,, t)_h 1 f 00(2,1) dz
curvature with time  df ot |4 ot
(2) Change 1n stress of — 2
.. —> f
existing layers stressed film v
substrate
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Stress changes when

/ growth stopped

Layer thickness
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Measure film stress under
’ different conditions to

— | understand mechanisms
controlling it
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MOS can be implemented on many platforms

Deposition

techniques MOS on GaN

rotating disk

CVD reactor
(Hearne et al)

-CVD

- Sputtering

- PVD

- MBE

-PLD
-electrodeposition

Materials systems

- heteroepitaxy - hard coatings
(SiGe/Si, InGaAs/GaAs) (DLC, a-C)

- optoelectronics - oxides (TiO,, Ce0,)
(GaN, AlGaN, GaSbh) - polycrystalline metals



Examples from stress evolution studies
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1. Residual stress in polycrystalline films
- Electrodeposition/evaporation

- Dependence on growth conditions, material SEDSUS—
0 200 400 600 800 1000

Stress* Thickness (N/m)
@ =

- Evolution with film thickness ey

2. Sputter deposition
- Effect of processing parameters

Stress-Ui ckness (MPa-Gn)

(surface roughness) Sn whisker #

3. Mechanical properties of Sn films

- stress leads to whiskers S Ny S
: o NP
- enhance stress relaxation —mAL S
LA

4. Strain in battery materials
- large volume changes
- associated with phase changes




Stress*Thickness (N/m)
(e

Features of stress evolution in polycrystalline films

Stress changes with microstructure
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Ag on Si0,, 23°C
(Floro et al, 2001)

o

500

Thickness (A)
Stress depends on kinetics (temperature, material, deposition rate)

Stages of film/stress evolution:
- Nucleation

Compressive or no stress
- Coalescence

Tensile rise
- Continuous film

Steady-state compressive

(for high atomic mobility)
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Ag on SiO, (Chason, Hearne, JAP 2013)

Fe on MgF2 (Thurner and Abermann,
TSF, 1990)

- Lower T, same growth rate:

- more tensile
- At 30 °C:

Fe: tensile, Ag: compressive



Simple model for stress evolution in polcrystalline films
Consider stress as balance between different generation/relaxation mechanisms

occurring at triple junction (top of grain boundary)

Compressive: insertion
at grain boundaries

Tensile: grain -

boundaryformation "'.

- Tensile = grain boundary formation 2
1 >

(0)
A
o[£
r L
O_Z

0

<

- Compressive
- insert atoms into grain boundary l l Deposition flux l l
(driven by surface supersaturation) l l l l l l l l l l l l u,+ ou,

Oc= (SMS/ Q film B

substrate

- Mediated by kinetic processes on surface:
- Growth rate R, diffusivity D, grain size L



Write equations for evolution of stress

Ap drives atoms into or Combine stress as grain boundary forms
out of gb (tensile) with stress as atoms are inserted
_ into it (compressive)
1) Au = oug +0,Q

fux/” N \ A A /
f

N .-a
N, - 4C. DAIJ 3) Induced stress: 0, =0, - M, :

ot a’ kT L

Master equation for stress 90, _ 4CM, D (o Q+ )
evolution at triple junction: 5, akT L fj s

2)

-At. /T Rate of growth of
O OC + (O OC) e v Where At =d / h < grain boundary



2500,

Steady state stress: dependence on growth rate

ste -state stress
ady A
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Electrodeposited Ni on Au, Hearne et al, JAP 97 (2
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L I Stress reaches steady-state (constant slope)
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Grain size remains ~1 um

stress-free films




Data: Stress changes with thickness ~ Model:

Stress*Thickness (N/m)

Stress vs thickness: effect of coalescence of islands

Depends on temperature O =0.+4+(0. —0.) exp(- ab
=0c+(0p —0¢) exp( Tagb)

PVD Ag on Si0,, (Hearne) ot

Ag - &hg,/o? t changes during coalescence

- Model islands as cylindrical caps
to calculate grain boundary velocity

30°C

20 40 60 80 100
Thickness (nm)

Grain boundary growth rate changes as film grows

Stress changes with grain boundary velocity



Consider process of coalescence

- Calculate how dh,,/d t changes during coalescence
- Model i1slands as cylindrical caps
-Initial spacing is L

Grain boundary velocity changes as islands grow

Grain boundary velocity

< L > 7 hiL

Before coalescence, di,,/dt =0

(no grain boundary)



Consider process of coalescence

- Calculate how dh,,/d ¢ changes during coalescence

- Model islands as cylindrical caps

Grain boundary velocity

hiL

Grain boundary forms at onset of coalescence



Consider process of coalescence

- Calculate how dh,,/d ¢ changes during coalescence

- Model islands as cylindrical caps

A Grain boundary velocity

hiL

Grain boundary grows rapidly at first



Consider process of coalescence

- Calculate how dh,,/d ¢ changes during coalescence

- Model islands as cylindrical caps

T Grain boundary velocity

by |

)

Slows down as film gets thicker



Consider process of coalescence

- Calculate how dh,,/d t changes during coalescence

- Model islands as cylindrical caps

Grain boundary velocity

ligh __________ \7

l%gb approaches average growth rate (R) as film gets thicker (steady-state)



Model fits Ag on SiO, data
Change atomic mobility (D) at constant R, L

. aD
PVD Ag on $i0,, (Hearne) Model: 0,=0.+(0,-0.) exp(- i )
gb
£30r Ag £330 <U>hf=azai T=5.695
Z -80°C zZ | :
2 20t 2 20
& &
g S
< i = |
= 10 500 £ 10
5 —20°C Z
a 0 30°C I T=147s
0 20 40 60 80 100 0 20 _ 40 60 80 100
Thickness (nm) Thickness (nm)

- Islands are cylindrical caps, contact angle ~68 deg,

- Fitting parameters: o, O, T
Use same o0 (442 MPa) and o (-359 MPa)
for all temperatures

-t different for each T (proportional to 1/D)

«——— L2 —

—> Grain boundary model captures change with thickness, temperature




Role of grain boundary in high mobility material (Sn)

Monitor stress during

electrochemical deposition Anode
Reference )
ERRE R RN eEur W Potentiostat
1T T T T 1 SCE

I I I I . .
Si Substrate (200 pm)

"‘"

«— Glass cell

1)  Evaporate seed layer of Sn (1 pm) NN TN [N N N\ . .
2)  Electrodeposit Sn film at constant voltage Sn platmg solution
I R O A Solderon SC from RoHS
Pt ] ( )
Teflon mesh Teflon
Block Block

Etalon—
Si wafer with

metal seed layer (Sn or Cu)

Laser Camera

Look at effect of srowth interrupts




Stress behavior during interrupt & regrowth

Shin and Chason, PRL 2009
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Interpretation of stress behavior at interrupt & resrowth
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Interpretation of stress behavior at interrupt & resrowth
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Stress-thickness vs thickness

u<0

IFIRY

Stress measurements in electrodeposited Sn

- same slope after interrupts

& 0!

: Vo

28 4

£ g

» -80 |
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z 0 1 2 3 4 5 6 7
Thickness (uwm)

Stress 1s independent of layer thickness:

—> confirms role of grain boundary in stress evolution

etc¢hin

Stress-thickness (MPa-pm)

Stress during etching

40

20 -

20 1

40 1

Etching

Equivalence between growth and etching:

- negative chemical potential on surface
induces tensile stress in film

- confirms role of surface chemical
potential in stress evolution

Growth
0 ] 2 3 p

Thickness (tm)




Stress evolution during sputter deposition

Additional parameters: ion energy, gas pressure

MOSS with magnetron sputtering sources
(Mo films, Fillon, Abadias, et al. TSF 2010)

sample holder
sample rotation
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virror control

IR-cut filter

focusable lens
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Lower pressure = more energetic particles
Stress becomes more compressive
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Dependence on growth rate different than evaporation
Don’t know grain size or grain evolution
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Stress evolution during sputter deposition (LLNL)

Be targets for NIF: need films with low stress (thick > 100 um)
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Be sputtering results (LLNL): effect of pressure

Lower pressure = more compressive initially

8000

Stress-Thickness (GPa-Angstroms)

0

-1000

-2000

7000 !
6000 !
5000 !
4000 !
3000 !
2000 !

1000

—10mT
— 5mT
— 2mT |-

2mT

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000

Thickness (Angstroms)

Why? Lower pressure means less scattering, more energetic
incident particles: implant into surface, produce higher density



Be sputtering results
Lower pressure = more compressive initially
8000 — 1 rr I rr T rr T r*r T * T *r T * 1

7000

6000 -

5000

4000 (-
3000
2000 -

1000 (-

Stress-Thickness (GPa-Angstroms)

0

-1000 |-

2mT

-2000 |-
| | | P S VI

L | L L L L L L
2000 0 2000 40006000 8000 10000 12000 \14000 16000
Thickness\(Angstroms)

BUT: Incremental stress changes from compressive to tensile
as layer gets thicker - kept same temperature, growth rate




Reason: Stress change correlated with rougher surface morphology

* I

- r
y Run #:!, 24 uym

)

\Run #7,19.0 ym |

Film structure:

roughening instability
(Zepeda-Ruiz, APL 2010)
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1500 | | . . vs depth L
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Greater roughness = Turns off compressive stress generation
Film becomes tensile



Sn whisker growth: driven by stress from IMC (intermetallic) formation

Whiskers form in Pb-free Sn coatings on Cu — cause systems failure (satellites, pacemakers)
5 A { “' IMC forms at Cu-Sn interface Correlate IMC/stress/whiskering
~ by S (Chason & Jadhav, APL 2009)

—
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@ 200}
oxide g 150}
Sn g 100}
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10} stress
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Measure stress evolution with MOSS
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Remove Sn layer — change in curvature gives stress in Sn



Stress in Sn (MPa)

Reduce whiskering by enhancing stress relaxation

70

- Measure mechanical ~ Use thermal expansion S wl? |
- , mismatch to create strain £ sl E |
properties of layers: g > J——
Sn and Sn alloys S|  AT=20°C
y Laser CCD Camera E, 30 : AT=10°C -
- Find coatings that -
~ 10
have low stress even Etalon £
after IMC grows Snfim on s 2
Heating =
Stage H 2o
-15

0 é :1 é é 1.0 1.2 14
Time (hrs)
Measure stress vs. strain for different films

Pure Sn Sn- 10%Pb Sn-10% Bi

P A ¢ v V- T
4% A i = - These results agree
" —) with conclusions from
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< — S whisker studies
I 1 1 7.5um SnBi
1: - ‘\7_5 um sn] (f) 7.5 um SnPb 1 Q) At .
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10 } 4 4 4
5| \ 1 1 _ - thickness
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Stress evolution during charging/discharging of batteries

(lithiation of Sn anode)

Put MOSS on electrochemical cell
stress-thickness

N
o

lithiation

N
(@)
T

N
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T

Potential vs. Li/ Li [V]

o
(&)}
J T

OO ..............
0 5 10 15 20 25 30 35 40

Time [hrs]

Measure stress associated with
phase changes

Need to know layer thicknesses to
interpret MOSS data

(Chen, Guduru 2013)
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Simultaneously measure C-V and

Stress* Thickness [MPa* um]



Summary

« Multi-beam wafer curvature (MOS) enables stress evolution to be
monitored in real-time

suseable on wide variety of platforms

esensitive, robust, easy to interpret

Stress dynamics provide more information than single stress
measurement

*Key for
*modeling
eunderstanding sources of stress
controlling stress (optimizing processing conditions)
*Frontiers
*Understanding multi-component materials
*Energetic particle effects

Take home point:
In situ monitoring useful for understanding stress evolution
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